Homological algebra exercise sheet Week 3

Throughout the whole sheet, A will denote an abelian category.

Remember that a sequence $A \xrightarrow{f} B \xrightarrow{g} C$ in an abelian category is said to be exact at B if $g \circ f = 0$ and the induced map $\operatorname{im}(f) \to \ker(g)$ is an isomorphism.

1. Let $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ be a sequence of chain complexes in \mathcal{A} . Show, without using Freyd-Mitchell embedding theorem, that if

$$0 \to A_n \to B_n \to C_n \to 0$$

is exact in \mathcal{A} for all $n \in \mathbb{Z}$, then

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

is exact in Ch(A).

2. Let $f_{\bullet}: B_{\bullet} \to C_{\bullet}$ and $g_{\bullet}: D_{\bullet} \to C_{\bullet}$ be morphisms of chain complexes. Assume that f_{\bullet} is monic and that, for each $n \in \mathbb{Z}$, there exists a map $h_n: D_n \to B_n$ such that $f_n \circ h_n = g_n$. Show that it defines a morphism h_{\bullet} , such that $f_{\bullet} \circ h_{\bullet} = g_{\bullet}$ in the category of chain complexes. In other words, show that if the following diagram commutes in \mathcal{A} for every $n \in \mathbb{Z}$,

$$B_n \xrightarrow{f_n} C_n$$

$$\exists h_n \qquad D_n$$

then h_{\bullet} is a morphism and the following commutes in $\mathbf{Ch}(\mathcal{A})$:

$$B_{\bullet} \xrightarrow{f_{\bullet}} C_{\bullet}$$

$$\downarrow f_{\bullet} \qquad \downarrow f_{\bullet} \qquad \downarrow$$

3. Let $D_{\bullet,\bullet} = \{D_{p,q}\}$ be a bounded double complex with maps

$$d_{p,q}^h = d^h : C_{p,q} \to C_{p-1,q}$$
 and $d_{p,q}^v = d^v : C_{p,q} \to C_{p,q-1}$.

Show that, if each row (or each column) $D_{\bullet,q}$ is an exact sequence, then the total complex $\text{Tot}(D_{\bullet,\bullet})$ is also exact.

Hint: You may need Freyd-Mitchell Embedding Theorem.

4. (Mapping Cone)

- (a) Let $f_{\bullet}: B_{\bullet} \to C_{\bullet}$ be a morphism of chain complexes. Show that f_{\bullet} induces a natural double complex $D_{\bullet, \bullet}$ which contains exactly two non-trivial rows: B_{\bullet} and C_{\bullet} .
- (b) We have seen that for every double complex $D_{\bullet,\bullet}$, by adding signs to all vertical maps $d_{p,q}^h$, one gets the maps $f_{p,q}:=(-1)^p d_{p,q}^v$. This defines a morphism of chain complexes : $f_{\bullet,q}:C_{\bullet,q}\to C_{\bullet,q-1}$. Therefore, we may view $\{C_{\bullet,q}\}_{q\in\mathbb{Z}}$ as a chain complex over the category $\mathbf{Ch}(\mathcal{A})$ and $f_{\bullet,q}$ as the boundary map at the q-th position. Show that this sign trick gives us a 1-1 correspondence between the objects of $\mathbf{Ch}(\mathbf{Ch}(\mathcal{A}))$ and the collection of all double complexes over \mathcal{A} .
- (c) Because of (b), we would like to define the category of double complexes in such that it is isomorphic to $\mathbf{Ch}(\mathbf{Ch}(\mathcal{A}))$. Thus, we define a morphism of double complexes between $C_{\bullet,\bullet}$ and $D_{\bullet,\bullet}$ as a collection of maps $\{f_{p,q}: C_{p,q} \to D_{p,q}\}$, such that after turning $C_{\bullet,\bullet}, D_{\bullet,\bullet}$ into objects in $\mathbf{Ch}(\mathbf{Ch}(\mathcal{A}))$ and using the sign trick, $f_{\bullet,\bullet}$ is a morphism of $\mathbf{Ch}(\mathbf{Ch}(\mathcal{A}))$.

Now let $B[-1]_{\bullet}$ be the chain complex defined by $B[-1]_n = B_{n-1}$ with differentials -d, where d are the differentials of B (see **Translation 1.2.8** in Weibel's book for a more general definition).

Show that one can consider C_{\bullet} and $B[-1]_{\bullet}$ as double complexes in a natural way. Moreover, prove that we have the following exact sequence in the category of double complexes:

$$0 \to C_{\bullet} \to D_{\bullet, \bullet} \to B[-1]_{\bullet} \to 0.$$

Remark: The total complex of $D_{\bullet,\bullet}$ is the mapping cone of f', denoted by $\operatorname{cone}(f')$, where f' is a map which differs from f by some signs. We will encounter the mapping cone later (see section 1.5 in Weibel's book).